Processing math: 100%

Translate

Monday, April 1, 2019

Teorema Limit Matematika




Dengan n adalah bilangan bulat positif, k konstanta, f dan g adalah fungsi yang mempunyai limit di c. Maka :

------------------------------------------------------------------------------------------------------------------

Teorema 1:
\boxed{\displaystyle\lim_{x \to c}k=k}

Contoh:
\displaystyle\lim_{x \to c}5=5

------------------------------------------------------------------------------------------------------------------

Teorema 2:
\boxed{\displaystyle\lim_{x \to c}x=c}

Contoh:
\displaystyle\lim_{x \to 5}x=5

------------------------------------------------------------------------------------------------------------------

Teorema 3:
\boxed{\displaystyle\lim_{x \to c}kf(x)=k \lim_{x \to c}f(x)}

Contoh:
\displaystyle\lim_{x \to c}2x^2
=\displaystyle {2\lim_{x \to 5}x^2}
=\displaystyle {2.(5^2)}
=\displaystyle {20}

------------------------------------------------------------------------------------------------------------------

Teorema 4:
\boxed{\displaystyle\lim_{x \to c}[f(x)+g(x)]=\lim_{x \to c}f(x)+ \lim_{x \to c}g(x)}

Contoh:
\displaystyle\lim_{x \to 5}2x^2+7x
=\displaystyle{2\lim_{x \to 5}x^2+7\lim_{x \to 5}x}
=\displaystyle{2.5^2+7.5}
=\displaystyle{55}

------------------------------------------------------------------------------------------------------------------

Teorema 5:
\boxed{\displaystyle\lim_{x \to c}[f(x)-g(x)]=\lim_{x \to c}f(x)- \lim_{x \to c}g(x)}

Contoh:
\displaystyle\lim_{x \to 5}x^3+4x
=\displaystyle{\lim_{x \to 2}x^3+4\lim_{x \to 2}x}
=\displaystyle{2^3+4.2}
=\displaystyle{16}

------------------------------------------------------------------------------------------------------------------

Teorema 6:
\boxed{\displaystyle\lim_{x \to c}[f(x).g(x)]=(\lim_{x \to c}f(x)).( \lim_{x \to c}g(x))}

Contoh:
\displaystyle\lim_{x \to 5}(x-1)(2x-3)
=\displaystyle{\lim_{x \to 5}(x-1).\lim_{x \to 5}(2x-3)}
=\displaystyle{(5-1)((2.5)-3}
=\displaystyle{4.7}
=\displaystyle{28}

------------------------------------------------------------------------------------------------------------------

Teorema 7:
\boxed{\displaystyle{{\displaystyle\lim_{x \to c}\frac{f(x)}{g(x)}=\frac{\displaystyle\lim_{x \to c}f(x)}{\displaystyle\lim_{x \to c}g(x)}}}}

Dengan \displaystyle\lim_{x \to c}g(x)\neq 0

Contoh:
\displaystyle\lim_{x \to 5}\frac{(x^2-5)}{(2x-1)}
=\displaystyle{\frac{\lim_{x \to 5}(x^2-5)}{\lim_{x \to 5}(2x-1)}}
=\displaystyle{\frac{(5^2-5)}{((2.5)-1)}}
=\displaystyle{\frac{20}{9}}

------------------------------------------------------------------------------------------------------------------

Teorema 8:
\boxed{\displaystyle\lim_{x \to c}(f(x))^2=(\lim_{x \to c}f(x))^2}

Contoh:
\displaystyle\lim_{x \to 2}(x^2-1)^3
=\displaystyle{(\lim_{x \to 2}(x^2-1))^3}
=\displaystyle{(2^2-1)^3}
=\displaystyle{3^3}
=\displaystyle{27}

------------------------------------------------------------------------------------------------------------------

Teorema 9:
\boxed{\displaystyle\lim_{x \to c}\sqrt[n]{f(x)}=\sqrt[n]{\lim_{x \to c}f(x)}}

Dengan \displaystyle\lim_{x \to c}f(x)>0 jika n bilangan genap

Contoh:
\displaystyle\lim_{x \to 3}\sqrt[2]{(x^3-2)}
=\displaystyle\sqrt[2]{\lim_{x \to 3}(x^3-2)}
=\displaystyle{\sqrt[2]{(3^3-2)}}
=\displaystyle{\sqrt[2]{25}}
=\displaystyle{5}

------------------------------------------------------------------------------------------------------------------

Sekian dan terima kasih..semoga bermanfaat...

Referensi: Kalkulus edisi Ketujuh oleh Dale Varberg dan Edwin J. Purcell

No comments:

Post a Comment